The parietal opercular auditory-sensorimotor network in musicians: A resting-state fMRI study
نویسندگان
چکیده
Auditory-sensorimotor coupling is critical for musical performance, during which auditory and somatosensory feedback signals are used to ensure desired outputs. Previous studies reported opercular activation in subjects performing or listening to music. A functional connectivity analysis suggested the parietal operculum (PO) as a connector hub that links auditory, somatosensory, and motor cortical areas. We therefore examined whether this PO network differs between musicians and non-musicians. We analyzed resting-state PO functional connectivity with Heschl's gyrus (HG), the planum temporale (PT), the precentral gyrus (preCG), and the postcentral gyrus (postCG) in 35 musicians and 35 non-musicians. In musicians, the left PO exhibited increased functional connectivity with the ipsilateral HG, PT, preCG, and postCG, whereas the right PO exhibited enhanced functional connectivity with the contralateral HG, preCG, and postCG and the ipsilateral postCG. Direct functional connectivity between an auditory area (the HG or PT) and a sensorimotor area (the preCG or postCG) did not significantly differ between the groups. The PO's functional connectivity with auditory and sensorimotor areas is enhanced in musicians relative to non-musicians. We propose that the PO network facilitates musical performance by mediating multimodal integration for modulating auditory-sensorimotor control.
منابع مشابه
Dynamic Reconfiguration of the Supplementary Motor Area Network during Imagined Music Performance
The supplementary motor area (SMA) has been shown to be the center for motor planning and is active during music listening and performance. However, limited data exist on the role of the SMA in music. Music performance requires complex information processing in auditory, visual, spatial, emotional, and motor domains, and this information is integrated for the performance. We hypothesized that t...
متن کاملNeural correlates of auditory temporal predictions during sensorimotor synchronization
Musical ensemble performance requires temporally precise interpersonal action coordination. To play in synchrony, ensemble musicians presumably rely on anticipatory mechanisms that enable them to predict the timing of sounds produced by co-performers. Previous studies have shown that individuals differ in their ability to predict upcoming tempo changes in paced finger-tapping tasks (indexed by ...
متن کاملMusical Training Induces Functional Plasticity in Perceptual and Motor Networks: Insights from Resting-State fMRI
A number of previous studies have examined music-related plasticity in terms of multi-sensory and motor integration but little is known about the functional and effective connectivity patterns of spontaneous intrinsic activity in these systems during the resting state in musicians. Using functional connectivity and Granger causal analysis, functional and effective connectivity among the motor a...
متن کاملCharacterizing Functional Connectivity Differences in Aging Adults using Machine Learning on Resting State fMRI Data
The brain at rest consists of spatially distributed but functionally connected regions, called intrinsic connectivity networks (ICNs). Resting state functional magnetic resonance imaging (rs-fMRI) has emerged as a way to characterize brain networks without confounds associated with task fMRI such as task difficulty and performance. Here we applied a Support Vector Machine (SVM) linear classifie...
متن کاملHomayoun as a Persian Music Scale on Non-Musician’s Brain: an fMRI Study
Introduction: The aim of this study was to get to a neurological evaluation of one of the Persian music scales, Homayoun, on brain activation of non-musician subjects. We selected this scale because Homayoun is one of the main scales in Persian classical music which is similar to minor mode in western scales. Methods: This study was performed on 19 right handed subjects, Aging 22-31. Here some ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain and Cognition
دوره 120 شماره
صفحات -
تاریخ انتشار 2018